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Abstract—A wide range of experimental holdup data have been analysed on the basis of the general
correlations of Chen & Spedding (1983). For upward inclined flow, holdup data in the range
(R/R;) = 4.0 to 275 were handled using a modification of the Chen & Spedding method, and for
the case of (R;/R,) < 4.0, the modified Armand equation was found to be suitable. Horizontal
stratified flow was examined using the Bernoulli equation, and shown to be a limiting case of the
free draining of a tube initially filled with liquid. For downward inclined stratified flow, the
Manning equation predicted the holdup accurately for low liquid rates and small angles of
inclination. In addition, for these two cases of horizontal and downward stratified flow, the holdup
also was examined in terms of the critical depth of flow as determined using the total energy
relation.

INTRODUCTION

Spedding & Chen (1979a, b) have suggested a general correlation for holdup prediction in
horizontal two phase flow. The correlation consisted of a plot of holdup ratio R;/R; against
the flow rate ratio Q;/Q,. The form of the correlation was suggested by Butterworth (1975)
and subsequently has been justified theoretically by Chen & Spedding (1983). A limited
range of horizontal experimental data were used by these latter authors to show that holdup
data may be broadly classified into three major groups, depending on the type of flow
pattern, with different relationships being found to represent the data for each group. For
bubble and slug type flows, the holdup was given by the equation due to Armand (1946),

.R_G _ 1
R, 02+1.2/(Qs/0)

(1]

which was shown to be a special case of the theoretical development due to Nguyen &
Spedding (1977). With stratified type flow the holdup was given by a series of relations
which were derived using a simple separated flow model. Annular flow, on the other hand,
was satisfactorily represented by a semi-empirical correlation for the R;/R, values
above 4.

It is the purpose of this work to review and extend the application of this type of
correlation technique to the horizontal two-phase flow situation and to endeavour to
expand its applicability to the case of inclined flow.

Horizontal flow

The holdup data of Spedding & Nguyen (1976) and Chen & Spedding (1979) ob-
tained for air-water flow in a 4.54 cm i.d. pipe over a 2m length are plotted in figures
1 and 2. In figure 1 the stratified flow data were excluded from the plot while in figure 2 the
stratified type flow data were included. The flow regimes given on the figures unfortunately
are not discernable following reproduction. This is particularly the case in figure 2 where the
data points for the various stratified regimes virtually are obliterated by the curves which
in all cases lie directly over the points. The accuracy of the R;; data was better than + 1%,
It should be noted that use of the factor R;/R, magnifies the scatter of the results in general

while an order of magnitude increase in R/ R, approximately halves the expected scatter of
data points.

307



P. L. SPEDDING and J. J. . CHEN

308

‘uoneyuasasd ayy Ajyduns 0} JI9PIO Ul PIPN[OXd AIB BIED
mop payneng adid *pr1 wd $¢°p € 10§ eyep dnpjoy moy 1d1em—ie aseyd-om] [RIUOZUOY ‘| iy
! o /%
00001 0001 004 () o

. I —a L | PN | PG Lioon s oy .\ i

1374080 + W4

(£ IR L TA

JAvM TION + URIUVMLS

s

Fddid + HUNLVHLS

oM

ONTS HONOUHL MO8 + HYIINNY
JAA TIOM + NV INY|
130UG + WY INNY

ONTS HONOBHL MO + G3iMIVALS
w3

13080

3wene

HYWWNY

e A . R
SINIOIY MO P 4

]<0°ux..._‘z¢_¢m; o~

NOILYIDI ONYWRY——o

e

-

Y




309

HOLDUP IN TWO PHASE FLOW

PR VS Liis s a o

‘K3ojea pmby [eygiadns = d.m ‘A[uo awda1 poynens ays ul st
mop sy ‘adid ‘p't wo p§'p € 10§ moy v1em—1re aseyd-om) Joj eiep dnpjoy JeIuozuoy T amfny
o/% o
0

o 0 No—
b
R M P 3 i LYV

1TWO0N0 + W4

aHIVNLS

3w TI08 + OIAVULS

oM

TWidl + QNALVULS

9N

OTS HONOWHL MO + ¥V YDINY
3AWA TION + WV YINY

13300M0 + NV VNN

OIS HONDUHL MO8 + OANIVELS

€B®OuT L uzbEnE XN

SO MOT4

O =0

g
$

e

l%—




310 P. L. SPEDDING and I. J. J. CHEN

The correlation of figure 1 shows that the annular type flow data fitted the semi-
empirical correlation suggested by Spedding & Chen (1979a, b).

Rg/R, = 045[Q6/Q,1"* 2]

for values of R;/R, > 4, where R;; and R, are the gas and liquid holdups and Q; and Q,
the gas and liquid volumetric flow rates. Below R;/R, = 4 the data are predominantly of
the slug flow type and do not give a good fit to the Armand equation. In addition a wide
scatter is in evidence. The bubbly flow regime data, on the other hand, give close agreement
with the Armand relation. The basic reason for the wide scatter in the slug flow regime
data and the lack of fit to the Armand equation, is that the tube length over which the
holdup was measured was too short to enclose the entire length of either a slug or a bubble
with certain types of long slug flow patterns. Thus under conditions where long liquid slugs
were present the measured liquid holdup would be biased towards the high side whereas
the bubbly flow regime would be correctly measured in the apparatus since there is little
sensitivity to the effect of tube length with the bubble regime. Therefore the holdup data
of Spedding & Nguyen (1976) and Chen & Spedding (1979) can be expected to be
inaccurate for the slug type flow regimes, giving value for R, which are on the high side.

At values of Q/Q, S 15,000 the data in figures 1 and 2 gave a constant value of R;/R,.
In this region of high gas flow and low liquid flow, the liquid is held in two forms; as
droplets which are swept along with the gas core as a homogeneous type mixture and as
a liquid film on the inner wall of the pipe. Armand (1946) showed that the liquid film
reduces with increasing gas flow rate to a constant asymptotic value of wall flow, i.e. to
a constant liquid film thickness on the inside wall of the pipe, independent of input liquid
flow above the critical value. For the experimental conditions of Nguyen & Spedding
(1976) the liquid holdup R, = 0.00364 gave a liquid film thickness of 0.083 mm at Q0;/0, >
15,000. The liquid film in this region of flow was observed to be continuous round the
inside wall of the pipe. However, when the gas rate was lifted above Q;/Q, = 60,000 the
liquid film was broken and commenced to strip off the inner wall of the tube. In such a
region of flow rate the R;/R, value was observed to climb steeply and presumably
eventually coincided with the homogeneous line where R;/R, = Q;/Q,. The maximum gas
rate obtainable for the experiments of Spedding & Nguyen (1976) and Chen & Spedding
(1979) was not sufficient to give this region quantitatively on figures 1 and 2, but did allow
the qualitative nature of the regime to be observed.

A detailed comparison was made in figures 3 and 4 between the form of correlation
suggested in figure 1 and a wide range of data for horizontal flow. Figure 3 compares
the calculated annular steam-water data of Harrison (1975) for 20 cm internal diameter
pipe over the pressure range of 0.45-1.23 x 10°kgm~'s~2 The data demonstrates
reasonable agreement with the correlation suggested in this work, but are of more
importance in that they show that the correlation is applicable to the steam water system
in large diameter pipes.

In figure 4 the data from a number of sources are plotted-and again exhibit a general
agreemnent with the correlation suggésted in this work. Some detail needs to be presented
about these data in order to highlight the breadth of application of the suggested
correlations. The steam water data of Isbin er al. (1957, 1958) and of Fujie (1964) for
pressures between 7 x 10°and 7 x 10°kgm~'s~?in 1.23 cm i.d. pipe gave good agreement
with the suggested correlation. Incidently the same is true of the data collected by Von
Glahn (1962) from various sources which are not included in figure 4 in the interests of
clarity. The following air-water data gave good agreement with the correlation; Chrisholm
& Laird (1958) for a 2.69 cm i.d. pipe, the Dartmouth correlation of Wallis (1969) and
Farmer et al. (1978) for a 2.5 cm i.d. pipe. The annular flow data of Hewitt et al. (1961)
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HOLDUP IN TWO PHASE FLOW 313

for a 3.18 cm i.d. pipe showed reasonable agreement with the correlation. The data of
Andrews (1966) obtained on 515m of 5.25cm i.d. pipe for water-natural gas flow gave
a good agreement with the Armand relation. Later work by Eaton (1970) on the same
apparatus and system but with a 10.5cm i.d. line again gave good agreement with the
Armand relation for slug type flows. The rest of the data obtained by these two workers
was in the stratified regions and while they were not applicable to the current discussion
it is worth noting that general agreement was obtained with the correlations in figure 2.
The data of Hoogendoorn (1957) for oil-water flow in a 14cm i.d. pipe gave good
agreement with the Armand relation for slug type flows but other data were ignored here
as they were in the stratified regimes, but they gave reasonable agreement with figure 2.
The data used by Lockhart & Martinelli (1949) proved to be very scattered and were not
used in this check. About a third of the data of Johnson & Abou-Sabe (1952) did not give
agreement with the correlation but this was to be expected since they were collected under
conditions pertaining to a study of heat transfer.

For horizontal two phase flow with the stratified type flow regimes the data in figure
2 initially exhibit a series of horizontal lines at lower gas rates which depend on superficial
liquid velocity Vg, but eventually at higher gas rates join into the holdup correlation of
Spedding & Chan (1979a, b) which has already been obtained for annular type flow. Data
from other literature sources such as Beggs (1972) have not been obtained in a systematic
manner, i.e. by setting the liquid rate and altering the gas rate, so give individual points
which require interpolation. However, it appears much of the available data do give
reasonable agreement with figure 2. Spedding & Nguyen (1978) suggested that this type
of flow regime has parallels with open channel flow. This aspect is examined in detail in
the following section using the techniques outlined by Chow (1959) and Henderson (1966).

Applying the Bernoulli equation to the case of horizontal stratified flow for a circular
conduit as given in figure 5.

— bk eyt hetc=E 3]
pg 28 T og

where P is the hydrostatic pressure, p, is the liquid density, y is the liquid depth, g is the
gravitational acceleration, ¥, is the average liquid velocity over a channel cross section
and E is the specific energy. For the case of inviscid flow the specific energy must be
constant, so

(E—-y)4. =01/2 [4]

4

2

-~ Datum 1

Figure 5. Schematic representation of free surface channel flow in a horizontal circular conduit.

-
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where A, is the cross-sectional area of liquid flow in the conduit which must be a function
of y, the liquid depth. Since for steady state conditions, the volumetric liquid flow rate must
be a constant, then [4] is a cubic with two real roots which are asymptotic to two equations
as shown in figure 6. The relations between A4, and y used in the calculation of figure 6
are given in figure 7. It is observed that by using the method of presentation given in figure
7 a straight line relation with 4, can be obtained over a wide range. At a given
flow rate Q, there is a minimum specific energy E, which occurs at the critical depth y,
where the Froude number (Fr = V,%/gy,) is equal to one. Further at this point of critical

=T

T

Figure 6. Calculated liquid depth against specific energy for free surface channel flow in a
horizontal circular conduit. Q, = liquid volume flow rate.

111111111:.141....

3 A/r? = 1502 (yf)+02M —

Afr? = 1320(yx)-0353

AfrZ=1478(y/n - 0132

10
y/r

Figure 7. The relationships between the area of liquid flow in a circular pipe and liquid depth.
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flow the conduit will give the maximum flow rate for a given specific energy. The appendix
details the method of calculation for the data of figure 6.

In figure 8 the critical depth of flow is presented for the various experimental conditions
employed by Spedding & Nguyen (1976) and Chen & Spedding (1979) when collecting the
data used in obtaining figure 2. The holdup data are converted to y the depth of flow in
the pipe, by calculating out the area of liquid flow,

AL = ATRL [5]

where A is the total cross sectional area of the pipe. The depth is found by use of figure
7. 1t will be observed that the actual experimental liquid depth obtained is much greater
than the critical depth calculated from [4). In fact the actual depth corresponds to twice
the critical depth in the low liquid flow range. However, as the liquid flow rate exceeds
about Q, =80 cm®s~!, that is, the superficial Reynolds number,

Reg = (p.01d)/(Arpy) = 2250 (6]

where d is the tube diameter, p, is the liquid density and yu; is the liquid viscosity, the
experimental data departs from this relation towards the condition of draining of an
initially liquid filled horizontal tube. The point of departure is when turbulent conditions
commence and is shown by the arrows of figure 8. Extending the reasoning of Bejamin
(1968) it is possible to calculate out the limiting condition of depth given as a dashed line
on figure 8.

Figure 9 illustrates the draining condition in a tube filled with a liquid. Normally the
air filled cavity or semi-infinite bubble is advancing into the upper section of the tube as
the liquid drains away in the opposite direction in the lower part of the tube. In order to

Di‘. | A 1 1 l 1 1 1 i l - | 1 I l I 4 I A | re 2 s 4

ye from open channel flow

-
J Stratitied flow -
° T L T I T T L] T l T L) T T l T ¥ T T ' L] ¥ Ll ¥
0 100 200 300 400 500

qLcm’ !

Figure 8. Actual depth of liquid flow against liquid volumetric rate for flow in a horizontal 4.54 cm
dia. pipe. Limiting height is taken from tube draining situation. The y, values are calculated from
open channel flow theory.
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Figure 9. Schematic representation of the draining condition for a horizontal pipe initially filled
with liquid.

make the problem more tractable it is assumed that the liquid passes away at such a
velocity that the cavity remains stationary with a stagnation point 0 at its tip and a free
boundary above the down stream liquid. The cross-sectional area of liquid flow.

A, =(n—o +%sin2a)r2=nr2(l - &) [7]
where
1.
&= (a -3 sin 2a>/n (8]

and 2« is the angle subtended at the tube axis by the free surface far downstream, and
r is the tube radius.
From the equation of continuity,

P/P,= A nrt=1—¢. 9]

Applying Bernoulli’s theorem along the free surface between the stagnation point 0 and
the asymptotic level of liquid far downstream

V2=2g(r —rcosa—h) [10]

where 4 is the head loss due to friction. The pressure at the top of the cross-section for
upstream is

1
Pr= —5p. P (1]

and the pressure in the liquid below has a hydrostatic variation with depth. The total
pressure force acting on a cross-section is,

Fp = (Pr, + pgr)mr? 12]
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while the total flow force must have the momentum flux added

Fy = (Pr,+ p.gr + p, V))nr?
1
= p,_(gr x EVlz)an.

Downstream the corresponding total flow force is

o

F,,=2p,gr’ '[ (cos & — cos 0)sin’6 d@

2 .
= p,_gr(AL Cos & +-§ r? sm’a)

Since F, = F,, and using [9] and [10] to eliminate the velocity term gives,

&1 — cosa)—% sin’e + & cosa +}—:(+l—¢2)=0.

Figure 10 details graphs of h/d, V,*/(gr)¥,*/(gr) and Q,*/(gr’) against y/d.

317

[13]

(4]

(15]

(16]

The calculations were made by first assuming a value of y/d and finding the
corresponding values for o and £. Solution of [16] under these conditions gives the
corresponding value of &/d. The flow force relations [13] and [15] must be equal and since

[9] gives the relation between the two velocities it is possible to show that

r

P2 =2gr (l — cosa —é)
and

Vi2=2gr(l — {)2<l — cosa —’;)

003
V -
/ gr
10 002
v‘ -
J gr
r h/ d
Jgr, —0-01
0 ——— } -0
07 08 09 0

1 [
04 05 |06
y/d

Figure 10. Gfaphs of yarious dimensionless parameters found for the free draining condition of
a horizontal pipe considered as functions of y/d, the dimensionless liquid depth.

[17]

(18]
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Since the rate of discharge of liquid is equal to the rate of increase of the cavity above
the liquid in the tube,

Q.= Vinr¥ [19]

and

Q//gr* =&l —c)\/z(l ~ cosa —é) [20]

The inviscid condition applies (i.e. # =0) when y/d =0.536 and the treatment of
Benjamin (1968) then is relevant. At y/d = 0.680 the values of 4/d and V,%/(gr) are at a
maximum showing that the speed of motion of the bubble is directly influenced by the
applied forces as reflected by the frictional resistance ratio. Thus when the frictional
resistance is positive at y/d > 0.563, the flow depth is greater than the minimum value
obtained under inviscid conditions because the flow of liquid out of the tube is hindered
by the friction. Thus steady flow in which the receding stream fills more than 0.563 d. of
the pipe is possible if energy loss occurs. To obtain the condition 4/d < 0.563, requires the
frictional energy loss & to be negative, which would necessitate an external supply of energy
to sustain steady flow. As y/d increases from its value of 0.563 at h =0, Q,%/(gd®) falls
steadily from the invicid condition. Thus the rate of liquid flow out of the tube cannot
be made larger than the value for free flow without energy loss and the only way in which
it can be increased is by pumping the liquid in order to overcome the resistance to flow.

The upstream Froude number, V,*/(gr), first increases with y/d to a maximum value
at y/d = 0.680 and then steadily falls away. The maximum value of the upstream Froude
number coincides with the maximum in the 4 /d curve in a similar manner as that reported
by Benjamin (1968) for a rectangular channel although the exact value was smaller. The
form of the P,%/(gr) against y /d graph shows that within a certain range of y/d values there
are two possible values for the downstream depth for each value of upstream velocity. For
example, when inviscid conditions pertain the receding liquid stream is supercritical and
may be shown to have a Froude number of 1.328 but it is possible for it to acquire another
larger depth in the subcritical range by passing through a hydraulic jump. Therefore,
steady flow in the range of y/d between 0.563 and about 0.768 would be virtually
impossible to maintain particularly close to the latter value since any flow instability, for
example, induced by wave formation, would precipitate the hydraulic jump which is latent
in the particular conditions. The result would be that the receding liquid flow would
commence in the supercritical condition but would soon pass into the alternative depth
at subcritical conditions which corresponds to the flow conditions of the free surface
established upstream. When the hydraulic jump takes place the interface between the liquid
and gas phases not only rises in height but would tend to become blurred due to the onset
of gas entrainment in the surface liquid. This would lead readily to a change in flow regime
and would explain the blurred region shown on figure 8 when the experimental data are
approaching the free draining conditions.

The above working and discussion on the draining condition in a tube initially filled
with a liquid, as illustrated in figure 9, obviously leads to a limiting condition for the
current two phase flow situation which is being considered in this work. However, the
development does have relevance in that it casts some light on the stratified situation under
discussion. Firstly for a pumped or gravity fed liquid condition the liquid holdup in the
tube will be in general below that of the free draining condition, as suggested by intuitive
reasoning earlier. Secondly, departure from inviscid condition can be expected to increase
the liquid holdup. Finally as the liquid rate is increased for given conditions the onset of
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surface disturbances will precipitate flow conditions that cause the flow to depart from the
stratified regime before the liquid holdup can reach the free draining situation. Chrisholm
& Laird (1958) have demonstrated that both liquid holdup and two phase pressure drop
increase with tube roughness in agreement with the second prediction. The data of figure
8 show that as the liquid rate is increased the liquid holdup does approach the free draining
condition but the flow changes into the mixed type regime before the actual data can
coincide with the theoretically derived free draining condition.

Vertical upward flow

Data for vertical upwards two-phase flow in pipes are presented in figures 3, 11-13
where they are compared with the correlations suggested in this work for horizontal flow.
The air-water data of Spedding & Nguyen (1976) obtained for a 4.54 cm i.d. tube are
shown in figure 11 and exhibit a series of curves which possess a systematic variation with
superficial liquid velocity. In general the curves are not smooth for values of superficial
liquid velocity, V5, <0.28 m s ! but exhibit a number of discontinuities which correspond
to changes in flow regime. At low values of Q;/Q, the flow regimes are the bubble, slug
and slug plus froth types. At point 4, for example, on figure 11 there is an abrupt change
in slope when the flow regime passes to the annular plus wave type of flow. Again, at point
B the flow becomes annular while at point C the curve has a tendency to level off as the
droplet type of flow commences. Similar rather abrupt changes in slope were noted in the
horizontal case but of course there was no complication of a variation with superficial
liquid velocity. Conversely with vertical upwards flow there is no complication from the
stratified regime since it does not occur for the case of vertical upwards flow.

Thus a correlation for the case of vertical upwards flow, which is developed using the
two parameters of holdup and volume flow ratios, is complex and cannot readily be
reduced to a simple form of the type which have been obtained for the case of horizontal
flow. The variation with superficial liquid velocity which has been mentioned can be
accommodated by the two relations,

Re/R, = 1/10.2 + K,0./Qd] (21]

for the region R;/R, < 4.0 where the Armand relation applied for horizontal flow case,
and

Ro/R, = K1 — exp [ — K;Q6/Q,11[Q6/ Q.1 [22]
for the region Ry/R, > 4.0-275. The relations |
In (K)) = — 1.44In (Pg,) — 0.007 [23]
K,=0.14In (V) + 1.0 [24]
In (K;) = 0.97 In (V) — 3.0 [25]

provide the observed variation with V. The values of K, 2,3 are made dimensionless by
the appropriate choice of units for the numerical constant in (23)~(25). In addition K, has
an upper limit of about 50 and a definite lower limit of 1.2 corresponding to the Armand
relation which is obtained at values of V5, > 1.0ms~!. Also X, and K, have lower limits
of about 0.25 and 0.003 and definite upper limits of 0.68 and 0.0057, respectively. Of
course, as the value of Qg/Q, increases to somewhat beyond 10*, the value of R /R, at
first becomes constant at about 275 for this case and then increases rapidly to the
homogeneous line where R;/R, = Q;/0,.
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In figures 12 and 13, data from various literature sources are plotted. The vertical flow
data of Aladyev et al. (1969) were obtained for potassium two phase flow in a tube of
diameter range between 0.54 and 0.625 cm. The data give good agreement with figure 11 up
until Q;/Q, < 300. Beyond this point significant departure is observed as the R;/R, value
fell away. The trend is opposite to that expected from Vg, variation but can be traced to
the electrical resistance method which was used to measure holdup. The technique
operated satisfactorily until the point was reached when the flow regime changed from pure
annular flow into droplet plus annular flow. This latter was a flow regime situation for
which the apparatus was not calibrated and therefore errors were obtained. Most of the
other data given in figure 12 were obtained at ¥, >0.15m s~ ' and therefore did not show
any effect of superficial liquid velocity. The expection was the data of Anderson &
Mantzouranis (1960) for 1.08 cm dia. vertical pipe where a definite effect of liquid
velocity was observed which roughly corresponded to that presented in figure 11. The data
of Govier et al. (1957) and Govier & Short (1958) for 2.6 cm dia. pipe and Brown et al.
(1960) for 3.81 cm dia. tube gave reasonable agreement with that of figure 11. The
Argon—water data of Casagrande es al. (1962) for 2.5cm dia. tube gave reasonable
agreement up to Qg/Q, of 10 and thereafter showed considerable departure from figure
11 data. The data of Moore & Wilde (1931) for gas—water, gas oil, kerosene and two types
of light lubricating oils over a pipe size range from 2.54 to 9.6 cm, were scattered and, being
obviously very inaccurate below Qg/Q, of 0.2, that part of the data were omitted from
the plot. There did not appear to be any effect of diameter on the results but the liquid
holdup was observed to increase as the viscosity of the liquid phase rose for the heavier
of the lubricating oils. Such an increase is to be expected. Spedding et al. (1982) have
pointed out that above a liquid viscosity of 2.0-3.0 x 10~2kgm~!s~! the pressure loss will
increase substantially above that for the air—water system.

In figure 13, detailed results from the U.S. documentation centre of Govier et al. (1957)
and Govier & Short (1958) are presented. The former show an effect of V5 which
approximately parallels the data in figure 11, while the latter indicate an effect of diameter
at const. V. On the figure 13, curve 4 is for 2.60 cm dia. tube and under, curve B is for
3.81 cm dia. tube and curve C is for 6.35 cm dia. tube. It is observed, therefore, that the
liquid holdup increases somewhat with tube diameter. In figure 3 no such effect is given
for the annular steam-water data of Harrison (1975) at high liquid flow rates for 20 cm
dia. pipe. In addition the data of Moore & Wilde (1931), which is admittedly scattered,
does not highlight any diameter effect over a wider range of geometry. However, the slug
flow data of Govier & Short (1958) exhibit consistent trends which usually accompany
reliable results and therefore it can be presumed that there is an effect of diameter in the
slug flow regime. The limited slug flow data of Lupoli et al. (1973) would add weight to
this conclusion. This would mean that the relation given by [21] only applies for a diameter
under about 5cm while a relation given by [22] possibly is of general application.

The data of Gill & Hewitt (1962) which are included in figure 13 were obtained from
film thickness measurements and since the droplet phase is excluded are considerably at
variance with other work examined here. However, the data do exhibit the general trend
with superficial liquid velocity which has been observed in figure 11 as well as the tendency
for the holdup ratio to come to a constant value at Q;/Q, greater than 10*.

Other workers have reported on holdup measurement in vertical two phase flow but
in most cases the data were not in a form to allow them to be used for this comparison
(see Hughmark & Pressburg 1961; Ros 1961; Cravarola & Hassid 1965; Ueda 1967; Ellis
& Lloyd Jones 1965; Yamazaki & Shiba 1969; Oshinowo & Charles 1974; and Yamazaki
& Yamaguchi 1967).
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Downward flow

The data for the downward angles of flow are detailed in figures 14-18, together with
what data are available from the work of Beggs (1972). The limitations of these latter data
have been mentioned previously. In the interests of clarity it has not been possible to label
each cross on the diagram with the actual superficial liquid velocity values. However, in
general, the data give reasonable agreement with the curves on figures 14-18 despite the
need for interpolation. It is immediately obvious that there is an increase in gas holdup
for a given set of conditions compared with the horizontal flow data of figure 2. In essence
this means that the liquid flows through the pipe more readily if downward inclinations
are employed. For example, comparison between the horizontal data of figure 2 and the
—6.17° angle data of figure 14 shows that there is approximately a ten fold increase in
holdup ratio R;/R, for similar conditions if the pipe is inclined downwards. Since two
phase flow pipe lines are never exactly level but must be sloped slightly to facilitate
drainage it is important to ensure that the fall designed into the system is in the direction
of fluid movement in order to enable the liquid to be handled more readily.

Again using the parallel with open channel flow it is possible to modify the
development of [3] and [4] by using the concept of total energy H as applied to figure 19.

125 . V2
yjcos a + % ci)s ~+ I sin o = y,/cos o + o” cf)s p, [26]
V2 v,?
AZ =k = H. 27
kl+2goosoz+ 2+2gcosoz [27]

Since H is constant then for the case of inviscid flow in general,

2
(H k)42 =2 28]
2gcosa

which gives a cubic relation of the type shown in figure 20, the method of solution of which
is given in the appendix. The form of the relation is similar to that given by [4] in figure
6 but [28] gives different values of the critical depth y, as shown in figure 21 for
a = — 6.17°. The major point to notice is that the actual depth is below the critical depth
so that the flow is supercritical with the Fr> 1.0. In general, the depth of flow is
approximately half the critical depth and falls as the angles is increased. The speed of the
flow is such that disturbances which may manifest themselves as surface waves will be
carried downstream with the liquid flow thus tending to stabilise the flow into the stratified
regime.
The Manning equation is used to express the flow in inclined open channels,

Q. = [A,(FYPS"")/n [29]

where 7 is the hydraulic mean radius being the area of liquid flow 4, over the wetted
perimeter of the flow channel, S is the slope of the channel and » the Manning roughness
coefficient of 0.0095 x 3.2805 = 0.0312 m. Figure 21 shows that the Manning equation
accurately predicts the actual experimental holdup for the case of & = — 6.17°. Table 1
gives the critical depth and the actual experimental depth together with the Manning
equation predictions for various other downward angles of inclination. As far as the
Manning equation is concerned it gave excellent agreement with experimental holdup data
for low liquid flow rates at low angles of inclination but appreciable departure occurred
as these two parameters increased in magnitude.
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Datum—

Figure 19. Schematic representation of free surface channel flow in a downward inclined circular
conduit. ¥ = velocity of liquid flow.
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Figure 20. Calculated liquid depth against specific energy for the free surface channel flow in a
, = liquid volumetric flow rate.

downward inclined circular conduit 4.54 cm dia.
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‘ i e i " n A A i

Stratitied flow x23-617°

“Ye from open

Figure 21. Depth of liquid flow against liquid volumetric flow rate for flow in a downward inclined
circular conduit of 4.54cm dia. at a = —6.17°,

Inclined upwards flow

Data for inclined upwards flow are shown in figures 22-25 and possess similar overall
trends to that for vertical upwards flow. Accordingly the data are expressed in the same
form as [21}-{25] with the details of the actual constants being as shown in table 2.

CONCLUSIONS

Experimental data available from the literature for different pipe inclinations (Isbin
1957, 1959; Fujie 1964; Govier & Omer 1962; etc.) were shown to be correlated by the
general correlation method of Chen & Spedding (1983) for the bubble, slug and annular flow
regimes. Horizontal stratified flow data exhibits constant (R;/R;) values for low values of
Qs/Q,. Examined in terms of the Bernoulli equation, it was found that the liquid depth
corresponded to approximately twice the critical depth when the liquid rate is below a
certain value, but approaches the condition of draining of an initially liquid filled horizontal
tube, when this value of liquid rate is exceeded. The analysis showed that the liquid holdup
cannot in general be greater than that of the free draining condition aithough departure
from inviscid conditions can be expected to increase the holdup, and as such was shown to
be a special case of the draining of a liquid filled tube.

Data for vertically upward and upward inclined flows were shown to fall about a series
of lines having similar shape as, but slightly displaced from, those given by Chen & Spedding
(1983) for horizontal case. Hence, correlation factors were incorporated to describe these
conditions.

Data for inclined downward flow showed that for the same flow situations, compared
with horizontal flow, there is a higher gas holdup indicating a higher liquid velocity. Again,
the Bernoulli equation was applied treating the situation as open channel flow. It is shown
that liquid depths are always below the critical depth with Fr > 1.0 and the depth of flow
in general being approximately half the critical depth. The depth of flow falls with the
increasing angle of inclination. For small angles of inclination, the Manning equation was
found to be adequate in describing the liquid depth corresponding to the holdup.
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Table 2. Correlations of upward inclined flow holdup data using the K relations of [21]-{25]

Relations with VSL - Angle
Equation (23) en(K)) = -1.44 tn(Vg ) - 0.007 | +90°
tn(K}) = -0.93 (Vg ) - 0.4 +70°
tn(K)) = -0.93 (Vg ) - 0.26 +45% & 20,75°
t(K)) = -0.91 (Vg ) - 0.60 +2.75°
Equation (24) K, = 0.14 (Vg ) + 1.0 +90% & 70°
K, = 0.072 n(Vg)+ 0.66 +45% & 20.75°
Ky = 0.072 in(Vg)+0.74 +2.75°
Equation (25) tn(Ky) = 0.97 1n(Vg,) - 3.0 +90°
n(Ky) = 0.96 (Vg ) - 3.2 +70°
tn(Ky) = 0.88 n(Vg,) - 3.2 +45%, 20.75% & 2.75°

REFERENCES

ALADYEV, . T., GAvrRiLOVD, N. D. & Doponov, L. D. 1969 Hydrodynamics of a two-phase
flow of potassium in tubes. ASME Heat Trans. Soviet Res. 1, 1-13.

ANDERSON, G. H. & MANTZOURANIS, B. G. 1960 Two-phase (gas-liquid) fiow phenomena.
Chem. Engng Sci. 12, 109-126.

ANDREWS, D. E. 1966 The prediction of pressure loss during two-phase horizontal flow in
two-inch line pipe. M.Sc. Thesis, University of Texas.

ARMAND, A. A. 1946 The resistance during the movement of a two-phase system in
horizontal pipes. Izv. V.T.I. 1, 16-23 AERE Trans. 828.

BEGGS, H. D. 1972 An experimental study of two-phase flow in inclined pipes, Ph.D. Thesis,
University of Tulsa.

Brown, R. A. S, SuLLIVAN, G. A. & GoVIEr, G. W. 1960 The upward vertical flow of
air-water mixtures. Can. J. Chem. Engng 38, 62-66.

BuTrTERWORTH, D. 1975 A comparison of some void-fraction relationships for cocurrent gas
liquid flow. Int. J. Multiphase Flow 1, 845-850.

CASAGRANDE, I., CRAVAROLO, L., HassID, A. & SILVESTRI, M. 1962 Evaluation and inter-
pretation of the experiments on adiabatic two-phase flow performance at C.1.S.E. under
the CAN-1 program. C.I.S.E. Report R-43,

CHEN, J. J. J. & SPEDDING, P. L. 1979 Data on holdup, pressure loss and flow pattern in a
horizontal tube. Univ. of Auckland, Report Eng. 214.

CHEN, J. J. J. & SPEDDING, P. L. 1983 An analysis of holdup in horizontal two-phase
gas-liquid flow. Int. J. Multiphase flow, 9, 147-159,

CuisHOLM, D. & LARD, A. D. K. 1958 Two-phase flow in rough tubes. Trans. ASME 80,
276-286.

CHow, V. T. 1959 Open-Channel Hydraulics. McGraw-Hill, New York.

CRAVAROLA, L. & Hassp, A. 1965 Liquid volume fraction in two-phase adiabatic systems.
Energia Nucleare 12, 569-577.

EAToN, B. A. 1970 The prediction of flow patterns, liquid holdup and pressure losses. Ph.D.
Thesis, University of Texas.

ELuss, J. E. & LLOYD JONES, E. 1965 Vertical gas-liquid flow problem. Symp. on two-phase
HAow. University of Exeter, B 101-B 140.

FARMER, P. R., HORROCKS, J. K. & STOTHART, P. H. 1978 Tracer methods for void fraction



338 P. L. SPEDDING and J. J. J. CHEN

and dispersion measurement in two phase flow. Measurement in polyphase flow, ASME
pp. 61-71.

Fung, H. 1964 A relation between steam quality and void fraction in two-phase flow.
AIChE. J. 10, 227-232.

GiLL, L. E. & HewirT, G. F. 1962 Further data on the upwards annular flow of air—water
mixtures AERE R 3935.

Govier, G. W., RADFORD, B. A. & DunN, J. S. C. 1957 The upwards vertical flow of
air-water mixtures—I. Can. J. Chem. Engng 35, 58-70.

GOVIER, G. W. & OMER, M. M. 1962 The horizontal pipe line flow of air-water mixtures.
Can. J. Chem. Engng 40, 93-104.

Govier, G. W. & SHORT, W. L. 1958 The upward vertical flow of air-water mixture—II. Can
J. Chem. Engng 36, 195-202.

HaRRrisoN, R. F. 1975 Methods for the analysis of geothermal two phase flow. M.E. Thesis,
University of Auckland.

HENDERSON, F. M. 1966 Open Channel Flow. MacMillan, London.

HewitT, G. F., KING, 1. & LOVEGROVE, P. L. 1961 Holdup and pressure drop measurements
in the two phase annular flow of air-water mixtures. AERE R 3764.

HooGENDOORN, C. J. 1959 Gas-liquid flow in horizontal pipe. Chem. Engng Sci. 9,
205-217.

HUGHMARK, G. A. & PRESSBURG, B. S. 1961 Holdup and pressure drop with gas-liquid flow
in a vertical pipe. AIChE J. 7, 677-682.

IsBiN, H. S., RopRIGUEZ, H. A., LArsoN, H. C. & PATTIE, B. P. 1959 Void fractions in
two-phase flow. AIChE J. 5, 427-432.

IsBiN, H. S., SHER, N. C. & EppY, K. C. 1957 Void fractions in two-phase steam—water flow.
AIChE J. 3, 136-142,

JounsoN, H. A. & ABou-SABE, A. E. 1952 Heat transfer and pressure drop for turbulent
flow of air-water mixtures in a horizontal pipe. Trans, ASME 74, 977-987.

LOCKHART, R.W. & MARTINELLL, R. C. 1949 Proposed correlation of data for isothermal
two phase, two component flows in pipes. CEP 45, 39-48.

LuroLl, P., Muzzio, A. & Sotcia, G. 1973 Void fraction measurements in air-water
adiabatic flows into large diameter ducts by gamma-rays absorption method. European
Two-Phase Flow Group Meeting, Brussels Paper Al.

MooRE, T. V. & WILDE, H. D. 1931 Experimental measurement of slippage in flow through
vertical pipes. Trans. AIME Pet. Div. 92, 296-313.

NGuYEN, V. T. & SPeDDING, P. L. 1977 Holdup in two-phase flow.—A. Theoretical
aspects. Chem. Engng Sci. 32, 1003-1014.

OsHmNowoO, T. & CHARLES, M. E. 1974 Vertical two-phase flow II Holdup and pressure drop.
Can. J. Chem. Engng 52, 438-448.

Ros, N. C.J. 1961 Simultaneous flow of gas and liquid as encountered in well tubing. J. Pet.
Tech. 13, 1037-1049.

SPEDDING, P. L. & CHEN, J. J. J. 1979a Correlation of holdup in two-phase flow. ANZAAS.
49, 16 Auckland.

SPEDDING, P. L. & CHEN, J. J. J. 1979b Correlation and estimation of holdup in two-phase
flow. Proc. N. Z. Geothermal Workshop 1, 180-199,

SPEDDING, P. L., CHEN, J. J. J. & NGUYEN, V. T. 1982 Pressure drop in two phase gas-liquid
flow in inclined pipe. Int. J. Multiphase Flow 8, 407-431.

SPEDDING, P. L. & NGUYEN, V. T. 1976 Data on holdup, pressure loss and flow pattern for
two-phase air-water flow in an inclined pipe. University of Auckland, Report Eng. 122.

SPEDDING, P. L. & NGUYEN, V. T. 1978 Bubble rise and liquid content in horizontal and
inclined tubes. Chem. Engng Sci. 33, 987-994.

UEDA, T. 1967 On upward flow of gas-liquid mixtures in vertical tubes. Bull. JSME 10,
989-1015.



HOLDUP IN TWO PHASE FLOW 339

VoN GLAHN, U. H. 1962 An empirical relation for predicting void fraction with two-phase
steam-water flow. NASA4 D-1189. 4

WaLLS, G. B. 1969 One-Dimensional Two-phase Flow, pp. 251-252. McGraw-Hill.

YaMAZAKL Y. & SHiBA, M. 1969 A comparative study on the pressure drop of air~water and
steam—water flow. Co-current gas-liquid flow (Edited by RHODES and ScotT), pp.
359-380.

YAMAzZAKL Y. & YAMAGUCHL, K. 1976 Void fraction correlation for boiling and non-boiling
vertical two phase flows in tubes. J. Nucl. Sci. and Tech. 13, 701-707,

APPENDIX
For horizontal stratified free channel flow in tubes [4] applies

(E —y )47 = 0,2/(28) [4]

since A4, is a function of y the liquid depth.
For example, in the region 0.5 € y/r € 1.5 where A4, is a straight line function of y,

A, =4.3584y — 1.8190 [30]

for a tube diameter of 4.54 cm which corresponds to the main body of data which are
reported in this work.
Thus [4] becomes,

(E —y)4.3584 y — 1.8190)’ = Q,%/(2g) [31]

which is a constant for any given liquid volumetric flow rate, so [31] represents a series of
curves which are bounded by and asympotes to the lines,

E=Y 1
Y =0.1417. (321

As y/r drops below 0.5 note that the latter equality of [32] will be reduced in value as [30]
no longer applies.

To find the critical depth of flow, values of Q, are assumed in [31]. The exact values
chosen in this work corresponded to the conditions under which the majority of the holdup
data were obtained. The r.h.s. of [31] is now constant and by assigning values to y the
corresponding values of E can be obtained. By trial and error calculation the value of E, at
the minimum point can be obtained, and this corresponds to y the initial depth.

Downward inclined stratified flow in tubes is handled in a similar manner except that [28]
applies in this particular case

__o
(H = k)42 = (28]

Again by assigning a volumetric flow rate and angle of inclination for a given pipe
diameter, the right hand side becomes a constant. The liquid flow area A, is a function of
y in the normal way. However k is now related to y,

k=y/cosa. [33]

Thus by assigning values to y it is possible to calculate the corresponding values for H. Trial
and error calculations thus will result in finding H,, the minimum energy which corresponds
to the initial depth y..



